Simbol matematika dasar
Simbol
|
Nama
|
Penjelasan
|
Contoh
|
|||
Dibaca sebagai
|
||||||
Kategori
|
||||||
=
|
x = y berarti x and y
mewakili hal atau nilai yang sama.
|
1 + 1 = 2
|
||||
sama dengan
|
||||||
umum
|
||||||
≠
|
x ≠ y berarti x dan y tidak
mewakili hal atau nilai yang sama.
|
1 ≠ 2
|
||||
tidak sama dengan
|
||||||
umum
|
||||||
<
> |
x < y berarti x lebih kecil
dari y.
x > y means x lebih besar dari y. |
3 < 4
5 > 4 |
||||
lebih kecil dari; lebih besar dari
|
||||||
≤
≥ |
x ≤ y berarti x lebih kecil dari
atau sama dengan y.
x ≥ y berarti x lebih besar dari atau sama dengan y. |
3 ≤ 4 and 5 ≤ 5
5 ≥ 4 and 5 ≥ 5 |
||||
lebih kecil dari atau sama dengan,
lebih besar dari atau sama dengan
|
||||||
+
|
4 + 6 berarti jumlah antara 4 dan 6.
|
2 + 7 = 9
|
||||
tambah
|
||||||
A1 + A2 means the disjoint union of
sets A1 and A2.
|
A1={1,2,3,4} ∧ A2={2,4,5,7} ⇒
A1 + A2 = {(1,1), (2,1), (3,1), (4,1), (2,2), (4,2), (5,2), (7,2)} |
|||||
the disjoint union of … and …
|
||||||
−
|
9 − 4 berarti 9 dikurangi 4.
|
8 − 3 = 5
|
||||
kurang
|
||||||
−3 berarti negatif dari angka 3.
|
−(−5) = 5
|
|||||
negatif
|
||||||
A − B berarti himpunan yang
mempunyai semua anggota dari A yang tidak terdapat pada B.
|
{1,2,4} − {1,3,4} = {2}
|
|||||
minus; without
|
||||||
×
|
3 × 4 berarti perkalian 3 oleh 4.
|
7 × 8 = 56
|
||||
kali
|
||||||
X×Y means the set of all ordered pairs with the
first element of each pair selected from X and the second element selected
from Y.
|
{1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)}
|
|||||
the Cartesian product of … and …;
the direct product of … and …
|
||||||
u × v means the cross product of vectors u and v
|
(1,2,5) × (3,4,−1) =
(−22, 16, − 2) |
|||||
cross
|
||||||
÷
/ |
6 ÷ 3 atau 6/3 berati 6 dibagi 3.
|
2 ÷ 4 = .5
12/4 = 3 |
||||
bagi
|
||||||
√
|
√x berarti bilangan positif yang kuadratnya x.
|
√4 = 2
|
||||
akar kuadrat
|
||||||
if z = r exp(iφ) is represented
in polar coordinates with -π < φ ≤ π, then √z = √r exp(iφ/2).
|
√(-1) = i
|
|||||
the complex square root of; square
root
|
||||||
| |
|
|x| means the distance in the real line (or the complex plane) between x
and zero.
|
|3| = 3, |-5| = |5|
|i| = 1, |3+4i| = 5 |
||||
nilai mutlak dari
|
||||||
!
|
n! adalah hasil dari 1×2×...×n.
|
4! = 1 × 2 × 3 × 4 = 24
|
||||
faktorial
|
||||||
~
|
X ~ D, means the random variable X
has the probability distribution D.
|
X ~ N(0,1), the standard normal
distribution
|
||||
has distribution
|
||||||
⇒
→ ⊃ |
x = 2 ⇒ x2 = 4 is
true, but x2 = 4 ⇒ x = 2 is in general
false (since x could be −2).
|
|||||
implies; if .. then
|
||||||
⇔
↔ |
A ⇔ B means A is true
if B is true and A is false if B is false.
|
x + 5 = y +2 ⇔ x +
3 = y
|
||||
if and only if; iff
|
||||||
¬
˜ |
The statement ¬A is true if and only if A
is false.
A slash placed through another operator is the same as "¬" placed in front. |
¬(¬A) ⇔ A
x ≠ y ⇔ ¬(x = y) |
||||
not
|
||||||
∧
|
logical conjunction
or meet in a lattice
|
The statement A ∧ B
is true if A and B are both true; else it is false.
|
||||
and
|
||||||
∨
|
logical disjunction
or join in a lattice
|
The statement A ∨ B
is true if A or B (or both) are true; if both are false, the
statement is false.
|
\ |
|||
⊕
⊻
|
The
statement A ⊕ B is true when either A or B, but not both,
are true. A ⊻ B means the same.
|
(¬A)
⊕ A is always true, A ⊕ A
is always false.
|
||||
xor
|
||||||
∀
|
∀ x: P(x) means P(x)
is true for all x.
|
∀ n ∈ N: n2 ≥
n.
|
||||
for all; for any; for each
|
||||||
∃
|
∃ x: P(x) means there is at
least one x such that P(x) is true.
|
∃ n ∈ N: n is even.
|
||||
there exists
|
||||||
∃!
|
∃! x: P(x) means there is
exactly one x such that P(x) is true.
|
∃! n ∈ N: n +
5 = 2n.
|
||||
there exists exactly one
|
||||||
:=
≡ :⇔ |
x := y or x ≡
y means x is defined to be another name for y (but note
that ≡ can also mean other things, such as congruence).
P :⇔ Q means P is defined to be logically equivalent to Q. |
cosh x :=
(1/2)(exp x + exp (−x))
A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B) |
||||
is defined as
|
||||||
everywhere
|
||||||
{ , }
|
set brackets
|
{a,b,c}
means the set consisting of a, b, and c.
|
N = {0,1,2,...}
|
|||
the set of ...
|
||||||
{ : }
{ | } |
{x :
P(x)} means the set of all x for which P(x)
is true. {x | P(x)} is the same as {x :
P(x)}.
|
{n ∈ N :
n2 < 20} = {0,1,2,3,4}
|
||||
the set of ... such that ...
|
||||||
∅
{} |
∅ berarti himpunan yang tidak memiliki elemen. {}
juga berarti hal yang sama.
|
{n ∈ N :
1 < n2 < 4} = ∅
|
||||
himpunan kosong
|
||||||
∈
∉ |
set
membership
|
a ∈ S
means a is an element of the set S; a ∉ S
means a is not an element of S.
|
(1/2)−1 ∈ N
2−1 ∉ N |
|||
is an element of; is not an element of
|
||||||
everywhere, teori himpunan
|
||||||
⊆
⊂ |
A ⊆ B
means every element of A is also element of B.
A ⊂ B means A ⊆ B but A ≠ B. |
A ∩ B ⊆ A;
Q ⊂ R
|
||||
is a subset of
|
||||||
⊇
⊃ |
A ⊇ B
means every element of B is also element of A.
A ⊃ B means A ⊇ B but A ≠ B. |
A ∪ B ⊇ B;
R ⊃ Q
|
||||
is a superset of
|
||||||
∪
|
A ∪ B
means the set that contains all the elements from A and also all those
from B, but no others.
|
A ⊆ B ⇔ A ∪ B =
B
|
||||
the union of ... and ...; union
|
||||||
∩
|
A ∩ B means the set
that contains all those elements that A and B have in common.
|
{x ∈ R :
x2 = 1} ∩ N = {1}
|
||||
intersected with; intersect
|
||||||
\
|
A \ B means the set that
contains all those elements of A that are not in B.
|
{1,2,3,4}
\ {3,4,5,6} = {1,2}
|
||||
minus; without
|
||||||
( )
|
function
application
|
f(x) berarti nilai fungsi f
pada elemen x.
|
Jika f(x) :=
x2, maka f(3) = 32 = 9.
|
|||
of
|
||||||
precedence
grouping
|
Perform
the operations inside the parentheses first.
|
(8/4)/2 =
2/2 = 1, but 8/(4/2) = 8/2 = 4.
|
||||
umum
|
||||||
f:X→Y
|
function arrow
|
f: X → Y
means the function f maps the set X into the set Y.
|
Let f: Z →
N be defined by f(x) = x2.
|
|||
from ... to
|
||||||
o
|
fog is the function, such that (fog)(x) = f(g(x)).
|
if f(x)
= 2x, and g(x) = x + 3, then (fog)(x) = 2(x + 3).
|
||||
composed with
|
||||||
N
ℕ
|
N berarti {0,1,2,3,...}, but see
the article on natural numbers for a different convention.
|
{|a| :
a ∈ Z} = N
|
||||
N
|
||||||
Z
ℤ
|
Z berarti
{...,−3,−2,−1,0,1,2,3,...}.
|
{a :
|a| ∈ N} = Z
|
||||
Z
|
||||||
Q
ℚ
|
Q berarti {p/q :
p,q ∈ Z, q ≠ 0}.
|
3.14 ∈ Q
π ∉ Q |
||||
Q
|
||||||
R
ℝ
|
R berarti {limn→∞ an :
∀ n ∈ N: an ∈ Q,
the limit exists}.
|
π ∈ R
√(−1) ∉ R |
||||
R
|
||||||
C
ℂ
|
C means {a + bi :
a,b ∈ R}.
|
i = √(−1) ∈ C
|
||||
C
|
||||||
∞
|
∞ is an
element of the extended number
line that is greater than all real numbers; it often occurs in limits.
|
limx→0 1/|x| =
∞
|
||||
infinity
|
||||||
π
|
π berarti
perbandingan (rasio) antara keliling lingkaran
dengan diameternya.
|
A = πr² adalah luas
lingkaran dengan jari-jari (radius) r
|
||||
pi
|
||||||
|| ||
|
||x||
is the norm of the element x of a normed vector space.
|
||x+y||
≤ ||x|| + ||y||
|
||||
norm of; length of
|
||||||
∑
|
∑k=1n ak
means a1 + a2 + ... + an.
|
∑k=14 k2 =
12 + 22 + 32 + 42 =
1 + 4 + 9 + 16 = 30
|
||||
sum over ... from ... to ... of
|
||||||
∏
|
∏k=1n ak
means a1a2···an.
|
∏k=14 (k +
2) = (1 + 2)(2 + 2)(3 + 2)(4 + 2) = 3 ×
4 × 5 × 6 = 360
|
||||
product over ... from ... to ... of
|
||||||
∏i=0nYi
means the set of all (n+1)-tuples (y0,...,yn).
|
∏n=13R
= Rn
|
|||||
the Cartesian product of; the direct product of
|
||||||
'
|
If f(x) = x2,
then f '(x) = 2x
|
|||||
… prime; derivative of …
|
||||||
∫
|
∫ f(x) dx
means a function whose derivative is f.
|
∫x2 dx =
x3/3 + C
|
||||
indefinite integral of …; the antiderivative of …
|
||||||
∫0b x2
dx = b3/3;
|
||||||
integral from ... to ... of ... with respect to
|
||||||
∇
|
∇f (x1, …, xn) is the
vector of partial derivatives (df / dx1, …, df
/ dxn).
|
If f
(x,y,z) = 3xy + z² then ∇f = (3y, 3x,
2z)
|
||||
∂
|
With f
(x1, …, xn), ∂f/∂xi is the derivative
of f with respect to xi, with all other variables kept
constant.
|
If f(x,y)
= x2y, then ∂f/∂x = 2xy
|
||||
partial derivative of
|
||||||
∂M
means the boundary of M
|
∂{x :
||x|| ≤ 2} =
{x : || x || = 2} |
|||||
boundary of
|
||||||
⊥
|
x ⊥ y means x is
perpendicular to y; or more generally x is orthogonal to y.
|
If l⊥m and m⊥n then l || n.
|
||||
is perpendicular to
|
||||||
x = ⊥ means x is the smallest
element.
|
∀x : x ∧ ⊥ = ⊥
|
|||||
the bottom element
|
||||||
|=
|
A ⊧ B means the sentence A
entails the sentence B, that is every model in which A
is true, B is also true.
|
A ⊧ A ∨ ¬A
|
||||
entails
|
||||||
|-
|
x ⊢ y means y is derived
from x.
|
A → B ⊢ ¬B
→ ¬A
|
||||
infers or is derived from
|
||||||
◅
|
N ◅ G
means that N is a normal subgroup of group G.
|
Z(G) ◅ G
|
||||
is a normal subgroup of
|
||||||
/
|
G/H means the quotient of
group G modulo
its subgroup H.
|
{0, a,
2a, b, b+a, b+2a} / {0, b} =
{{0, b}, {a, b+a}, {2a, b+2a}}
|
||||
mod
|
||||||
≈
|
G ≈ H means that group G
is isomorphic to group H
|
Q / {1, −1} ≈ V,
where Q is the quaternion group and V is the Klein four-group. |
||||
is isomorphic to
|
||||||